

INTSGRA

Units for 4-pipe systems, air and water source, with scroll, screw and inverter screw compressors, from 36 to 1100 kW.

Highest Energy Efficiency

Self-adaptability with simultaneous loads

System Simplification

Reduction of on-site operations

When combining perfect comfort and maximum efficiency is the greatest chalence Modern multi-function buildings, shopping centres, large business centres, hotels, swimming pools, and wellness centres are characterized by increasingly complex comfort conditions.

Many years of experience in these applications has led Climaveneta to develop its own solution to the main challenges posed by these structures, without making any compromises:

Simultaneous heating and cooling

Due to the coexistence in the same building of areas dedicated to different functions, with very variable heat loads, enhanced by large glass surfaces, the simultaneous demand for heating and cooling during the year is increasingly common.

Growing attention to comfort

The need to guarantee ideal temperature, humidity and air quality conditions throughout the year means that system solutions must be provided in order to offer a no compromise answer to the comfort requirements of different users.

Challenging energy efficiency and sustainability targets

Reduced investment and operating costs, respect for progressively stricter regulatory restrictions, attention to environmental impact and use of renewables are increasingly vital factors not only for the value of the property but also for the actual possibility of carrying it out.

Ambitious architectural solutions

Innovative concepts and a systematic quest for excellence push technology and materials to the limit, in order to guarantee strong visual characterisation, with no compromise on the aesthetic front, as well as excellent usability of the building.

Multi-use units are the most advanced answer for 4-pipe systems.

Maximum comfort, simultaneous hot and cold water production, unbeatable energy and system efficiency; the advantages of the INTEGRA all-in-one units installed in a 4-pipe system are infinite:

Chiller + high efficiency boiler

PLUG

INTEGRA all-in-one unit, scroll compressor

The construction approach that characterises our multiuse units has been designed to maximise their useful effect. The maximum efficiency of the system is reached with simultaneous loads, when the energy produced is used to satisfy the hot and cold demands of the total system. In modern buildings, with opposite overlapping heat loads, the INTEGRA units are the most efficient and greenest solution compared to any other system.

 Primary Energy consumption referring to an office building in Paris. The electric units are units with water sources.

Self-adaptability with simultaneous loads

Thanks to their advanced control logic, multiuse units are always able to respond to building climate control requirements, especially if overlapping loads occur. The unit can independently produce cooling and heating simultaneously, according to real needs.

System simplification

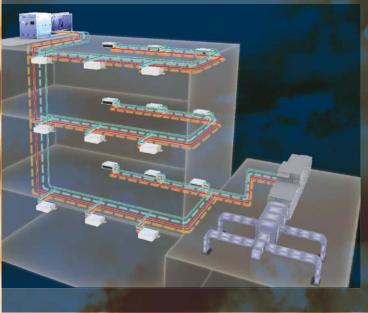
The use of a unit that independently produces both heating and cooling eliminates the need for separate heating and cooling resources. This significantly simplifies the system: plant areas are reduced, hydronic circuits are simplified, maintenance is reduced by half and control is rationalized.

Reduction of on-site operations Simplified system results in a significant reduction

Simplified system results in a significant reduction in the operations to be carried out on site. In fact, it is no longer necessary to perform the connection to the gas network, install and commission auxiliary boilers or manage areas to be used for conventional heating units. This means substantial savings in terms of time and cost for the customer.

Total Efficiency Ratio The most precise way to measure efficiency

Completely integrated functions and maximum performance synergy require an advanced measurement rating for the total efficiency of the unit: TER - Total Efficiency Ratio.


If you have a unit that can provide for heating and cooling simultaneously, then measuring efficiency with the traditional ratings such as EER and COP would be limiting.

In all the cases in which INTEGRA produces hot and cold water simultaneously, the real efficiency of the unit is the sum of its performance in the hot and cold modes. To objectively measure performance under simultaneous load conditions, Climaveneta, a pioneer in the development of this technology, has conceived TER – total efficiency ratio.

The TER is calculated as the ratio between the sum of the delivered heating and cooling power and electrical power input.

The TER reaches its maximum value when the loads are completely balanced and is the most effective way of representing the real efficiency of the unit.

Focus on: 4-pipe systems

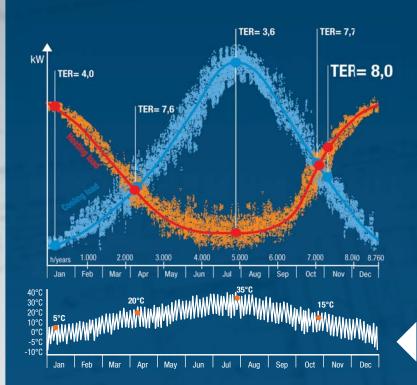
This type of system is suitable for air-conditioning in buildings that require separate areas to be heated and cooled at the same time.

It is combined with centralised solutions capable of producing hot and cold water in the two hydronic circuits of the system, assuring maximum comfort in every room of the building, independently and in any period of the year.

From now on, a single intelligent unit is sufficient for the management of these complex systems: INTEGRA.

INTSGRA -FX-Q

Challenging regulations, new incoming plant requirements, stronger environmental sustainability: Climaveneta turns these challenges into new opportunities with the new i-FX-Q₂ family.



A smart heat pump with full inverter technology

The new i-FX-Q $_{\!\!2}$ family employs inverter driven screw compressors and EC motor fans.

The use of variable speed technology in both compressors and fans leads to the achievement of unbeatable performances, especially at partial loads, which are the most common conditions during the entire year. The units in fact can perfectly and continuously match the real demands of the plant and the external environmental conditions by dynamic adaptation of the rotational speed of compressors and fans, ensuring at the same time complete stability of the water temperature. This dynamic behaviour guarantees the maximum exploitation of the absorbed power, leading to minimum energy waste.

Maximum efficiency. Always.

A multi-purpose unit is chosen in order to cover the maximum peak demand which, depending on the country where it is installed, may be in summer or in winter.

This implies that, for the rest of the year, the unit works at partial loads. And it is here that i-FX-Q₂ ensures maximum energy efficiency.

Primary energy consumption -41%

The graph illustrates the heating and cooling load of an office building located in Milan. The total efficiency values have been calculated with the following conditions: 12/7 °C, 40/45 °C of external air temperature and the unit working in partialised mode.

Soft**START**

Minimum starting current. Maximum cos(phi)

A further element of differentiation is the absence of starting current, achieved thanks to the characteristics of the compressor and the inverter-controlled capacity modulation. This decisive advantage offers superior reliability and contributes towards reducing the cost of the system, making additional switching devices superfluous. Moreover, the use of continuous speed variation motors maximizes the power factor. Optimal electrical supply conditions are therefore guaranteed without the need for expensive additional rephasing components.

HFO refrigerant: the eco-friendly alternative to HFCs

i-FX-Q₂ units are developed to satisfy the strictest requirements in terms of environmental sustainability. They are in fact the first multi-purpose units adopting the new generation HFO 1234yf low GWP refrigerant.

- ► ODP=0 and negligible GWP (GWP=4)
- > Rapid molecule disintegration in the atmosphere (10 days)
- > In line with EU F-Gas Regulation objectives
- Compatible with most common construction materials

Complete range

Air source units NECS-Q / ERACS2-Q / i-FX-Q2		
40 33 	924 850 700 800 900 1000 1100 1200 kw	Acoustic versions B: Base LN: Low Noise SL: Super Iow noise CA: High efficiency SL-CA: High efficiency Super Low Noise
211 200 5CREW 0 100 200 300 400 500 600 7	826 826 	Acoustic versions CA: High efficiency LN-CA: Low Noise, High efficiency SL-CA: Super Low Noise, High efficiency XL-CA: Extra Low Noise, High efficiency XL-CA-E: Extra Low Noise, High efficiency-Enhanced
230 200 200 0 100 200 300 400 500 600 7	<mark>1150</mark> 1100 	Acoustic versions CA: High efficiency SL-CA: Super Low Noise, High efficiency XL-CA: Extra Low Noise, High efficiency
is also	NTEGRA air source units are characterized b o due to efficient energy management durin thms especially developed by Climaveneta.	

Air and water source units

This is Climaveneta's exclusive solution for the most complex design challenges. INTEGRA units in special QI execution are designed and created to exchange heat, regardless of the air or water source.

and technology

Water is the heat source that can ensure maximum efficiency of the unit, especially in the winter and summer seasons. In the other seasons, it may be worthwhile exploiting air as the external source, which in these periods maintains a temperature between 10°C and 20°C. In this way, for some periods of the year, it is possible to stop the pumps for draining the water from the well, reducing the impact both of pump consumption and the costs related to the use of public water. This evolved technology developed by Climaveneta can manage the operation with a double heat source in an optimal way.

NECS-Q / B			0152	0182	0202	0252	0262	0302	0412	0512	0612	0604	0704	0804	0904	1004	1104	1204
Power supply		V/ph/Hz						1	400/3+N/5	i0								
PERFORMANCE																		
COOLING ONLY (GROSS VALUE)																		
Cooling capacity	(1)	kW	36,6	43,2	48,5	55,8	61,2	73,3	94,8	120	151	150	166	189	211	240	277	311
Total power input	(1)	kW	14,2	15,4	18,8	21,3	24,2	27,6	35,5	44,0	58,9	58,9	69,0	75,8	85,2	95,6	107	120
EER	(1)	kW/kW	2,58	2,81	2,58	2,62	2,53	2,66	2,67	2,73	2,56	2,54	2,41	2,49	2,48	2,51	2,58	2,58
COOLING ONLY (EN14511 VALUE)																		
Cooling capacity	(1)(2)	kW	36,3	42,8	48,2	55,4	60,8	72,9	94,3	120	150	149	166	188	210	239	276	310
EER	(1)(2)	kW/kW	2,51	2,72	2,52	2,55	2,47	2,60	2,62	2,68	2,51	2,50	2,37	2,45	2,44	2,48	2,54	2,54
HEATING ONLY (GROSS VALUE)																		
Total heating capacity	(3)	kW	41.1	48,9	55,3	62,5	68,1	83,1	107	136	173	167	185	209	234	266	306	344
Total power input	(3)	kW	14.2	15.6	18,1	21.1	22.8	26.3	34.0	42.3	54.4	58.0	64,9	72.1	79,8	92.0	104	116
COP	(3)	kW/kW	2.89	3,13	3,06	2,96	2,99	3,16	3,16	3,21	3,17	2,88	2,86	2,90	2,93	2,90	2,94	2,96
HEATING ONLY (EN14511 VALUE)			1	., .	.,	1		., .		.,		1				1	1.	1
Total heating capacity (2)(3) kW			41.4	49,4	55,7	63.0	68.6	83,7	108	136	174	168	186	210	235	268	308	346
COP	(2)(3)	kW/kW	2,85	3,07	3,01	2,91	2,95	3,11	3,12	3,17	3,13	2,86	2,83	2,88	2,91	2,87	2,91	2,93
COOLING WITH TOTAL HEAT RECOVER			2,00	0,01	0,01	2,01	2,00	0,11	0,12	0,17	0,10	2,00	2,00	2,00	2,01	2,07	2,01	2,00
Cooling capacity	(4)	kW	37.2	43.6	50.6	57.2	64.1	76.3	97.7	123	160	151	173	194	220	246	280	317
Total power input	(4)	kW	12,8	14,2	16,6	18.9	21.0	24,5	31.9	39.6	51,3	49.8	57,1	64,5	72.1	79,8	92,8	105
Recovery heat exchanger capacity	(4)	kW	49.2	56.9	66.2	75.0	83.8	99.3	128	161	208	198	226	255	288	321	368	415
TER	(4)	kW/kW	6.75	7.08	7,04	6.99	7,04	7,16	7,07	7,18	7,19	7,00	6,99	6.96	7,04	7,10	6,98	6.99
SEASONAL EFFICIENCY IN HEATING (EI	N1 400E VI		0,75	7,00	7,04	0,99	7,04	7,10	7,07	7,10	7,19	7,00	0,99	0,90	7,04	7,10	0,90	0,99
PDesign	(5)	kW	31,0	35,0	39,7	47,9	51.1	60,5	76.2	98,1	132	127	143	156	171	205	231	255
SCOP		K VV		3.23					3.23	3.28	3.33	3.25		3.35	3.21	3.23		3.26
	(5)	%	3,07 120	., .	3,21	3,07 120	3,12 122	3,25 127	3,23	., .	.,	., .	3,26		.,	., .	3,28	., .
Performance ns (Reg. 811/2013 UE)	(5)			126	125		122 A		120	128	130	127	127	131	126	126	128	128
Seasonal efficiency class (Regulation (UE) 811/2	:013) (5)	A	A+	A+	A	A	A+	-	-	-	-	-	-	-	-	-	-
EXCHANGERS																		
HEAT EXCHANGER USER SIDE IN REFR																		
Water flow	(1)	m³/h	6,29	7,44	8,35	9,61	10,5	12,6	16,3	20,7	25,9	25,8	28,6	32,5	36,3	41,3	47,7	53,5
Pressure drop	(1)	kPa	41,7	58,2	42,2	55,9	44,5	45,0	44,3	46,6	47,7	41,9	43,0	43,7	42,8	44,4	47,3	47,2
HEAT EXCHANGER USER SIDE IN HEAT																		
Water flow	(3)	m³/h	7,14	8,50	9,61	10,9	11,8	14,4	18,7	23,6	30,0	29,1	32,2	36,4	40,7	46,3	53,2	59,8
Pressure drop	(3)	kPa	53,6	75,9	55,9	71,3	56,1	59,1	57,9	60,6	63,8	53,1	54,5	54,8	53,7	55,8	58,9	58,9
COMPRESSORS																		
Compressors nr.		N°	2	2	2	2	2	2	2	2	2	4	4	4	4	4	4	4
No. Circuits		N°	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
NOISE LEVEL																		
Noise Pressure	(6)	dB(A)	52	52	52	52	52	53	54	55	55	60	60	60	61	62	63	63
Sound power level in cooling	(7)(8)	dB(A)	84	84	84	84	84	85	86	87	87	92	92	92	93	94	95	95
Sound power level in heating	(7)(9)	dB(A)	84	84	84	84	84	85	86	87	87	92	92	92	93	94	95	95
SIZE AND WEIGHT																		
А	(10)	mm	2038	2038	2038	2538	2538	2538	3088	3588	3588	3110	3110	3110	4110	4110	4110	4110
В	(10)	mm	1304	1304	1304	1304	1304	1304	1304	1304	1304	2220	2220	2220	2220	2220	2220	2220
Н	(10)	mm	1695	1695	1695	1695	1695	1695	1695	1695	1695	2150	2150	2150	2150	2150	2150	2150

Note 1 Plant (side) cooling exchanger water (in/out) 12°C/7°C; Source (side) heat exchanger air (in) 35°C. 2 Values in compliance with EN14511-3:2011. 3 Plant (side) heat exchanger water (in/out) 40°C/45°C; Source (side) heat exchanger air (in) 7°C - 87% R.H. 4 Plant (side) cooling exchanger water (in/out) 12°C/7°C; Plant (side) heat exchanger water (in/out) 40°C/45°C. 5 Seasonal space heating energy efficiency class LOW TEMPERATURE in AVERAGE climate conditions [REGULATION (UE) N. 811/2013] 6 Average sound pressure level at 10m distance, unit in a free field on a reflective surface; non-binding value calculated from the sound power level. 2 Cound ensure as the heating energy of the sound power level.

7 Sound power on the basis of measurements made in compliance with ISO 9614.

9 Sound power level in cooling, outdoors.
9 Sound power level in heating, outdoors.
10 Unit in standard configuration/execution, without optional accessories.

NECS-Q / CA			1314	1414	1614	1716	1816	2016	2116	2416	2418	2618	2818	3018	3218
Power supply		V/ph/Hz							400/3/50			S. Speciel			
PERFORMANCE															
COOLING ONLY (GROSS VALUE)															
Cooling capacity	(1)	kW	362	387	425	471	524	559	581	637	680	724	775	813	850
Total power input	(1)	kW	122	128	145	157	173	185	192	217	230	244	256	272	289
EER	(1)	kW/kW	2.96	3.03	2,94	3.01	3.04	3,03	3,03	2,94	2,95	2,96	3,03	2,99	2,94
COOLING ONLY (EN14511 VALUE)	(-)		2,00	0,00	2,01	0,01	0,01	0,00	0,00	2,01	2,00	2,00	0,00	2,00	2,01
Cooling capacity	(1)(2)	kW	361	385	423	470	522	557	579	635	677	720	773	810	846
EER	(1)(2)	kW/kW	2,91	2,98	2,89	2,97	2,99	2,99	2,99	2,89	2,91	2,91	2,99	2,94	2,89
HEATING ONLY (GROSS VALUE)	(1)(2)		2,01	2,50	2,00	2,51	2,00	2,00	2,55	2,00	2,01	2,51	2,00	2,54	2,00
Total heating capacity	(2)	kW	394	420	462	507	546	603	630	693	729	788	840	882	924
Total power input	(3) (3)	kW	120	127	1402	155	166	183	189	210	221	239	253	266	280
	(3)	kW/kW	3,30	3,31	3,30	3,28	3,29	3,30	3,32	3,30	3,29	3,29	3,33	3,31	3,30
HEATING ONLY (EN14511 VALUE)	(0) (6)		0.00	100	10.1	500	5.40	000	000	000	700	700	0.10		0.00
Total heating capacity	(2)(3)	kW	396	422	464	509	549	606	633	696	732	792	843	886	928
COP	(2)(3)	kW/kW	3,26	3,28	3,26	3,25	3,26	3,27	3,29	3,27	3,26	3,26	3,30	3,28	3,27
COOLING WITH TOTAL HEAT RECOVE															
Cooling capacity	(4)	kW	355	379	423	460	500	547	568	636	667	711	758	802	848
Total power input	(4)	kW	107	113	126	139	150	163	170	189	200	213	226	240	252
Recovery heat exchanger capacity	(4)	kW	455	485	542	590	640	700	728	814	854	911	971	1027	1085
TER		kW/kW	7,55	7,66	7,64	7,55	7,63	7,67	7,64	7,68	7,62	7,61	7,63	7,63	7,67
SEASONAL EFFICIENCY IN HEATING	(EN14825 VA	LUE)													
PDesign	(5)	kW	283	317	363	376	390	-	-	-	-	- 10 A	-	-	-
SCOP	(5)		3.75	3.86	3.73	3.86	3.77	-		-	-	-	-	-	-
Performance ns (Reg. 811/2013 UE)		%	147	151	146	152	148	-	-	-	-	_	-	-	-
Seasonal efficiency class (Regulation		013) (5)	-	-	-	-	-	-	-	-	-	-	-	-	-
EXCHANGERS		010) (0)													
HEAT EXCHANGER USER SIDE IN REF	FRIGERATION	1													
Water flow	(1)	m³/h	62,4	66,6	73,2	81,1	90,2	96,3	100	110	117	125	133	140	146
Pressure drop	(1)	kPa	56,4	49,2	59.4	41,5	51,3	44,5	48,1	49,3	50,7	57,4	44,5	48,9	53,5
HEAT EXCHANGER USER SIDE IN HEA		nr a	30,4	49,2	33,4	41,J	51,5	44,3	40,1	45,5	30,7	57,4	44,J	40,5	55,5
Water flow		m³/h	68.5	73.0	80.3	88.1	95.0	105	109	120	127	137	146	153	161
	(3)														
Pressure drop	(3)	kPa	68,0	59,1	71,5	48,9	56,8	52,7	57,5	59,4	59,3	69,4	53,3	58,7	64,4
COMPRESSORS	110					0	0	0							
Compressors nr.	N°		4	4	4	6	6	6	6	6	8	8	8	8	8
No. Circuits	N°		2	2	2	3	3	3	3	3	4	4	4	4	4
NOISE LEVEL															
Noise Pressure	(6)	dB(A)	65	65	65	64	65	65	65	66	66	66	67	67	67
Sound power level in cooling	(7)(8)	dB(A)	97	97	97	97	98	98	98	99	99	99	100	100	100
Sound power level in heating	(7)(9)	dB(A)	97	97	97	97	98	0	0	0	0	0	0	0	0
SIZE AND WEIGHT															
A	(10)	mm	5080	5080	5080	6255	7430	7430	7430	7430	9780	9780	9780	9780	9780
В	(10)	mm	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260
Н	(10)	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
Operating weight	(10)	kg	3850	3950	3980	5460	5740	5890	5970	6020	7350	7500	7700	7740	7770

ERACS2-Q / CA			1062	1162	1362	1562	1762	1962	2022	2222	2422	2622	2722	3222
Power supply		V/ph/Hz						400/3/50						
PERFORMANCE														
COOLING ONLY (GROSS VALUE)														
Cooling capacity	(1)	kW	210	248	302	329	380	425	483	525	554	624	701	826
Total power input	(1)	kW	72,1	84,8	101	109	129	144	156	167	176	201	222	264
EER	(1)	kW/kW	2,91	2,93	2,98	3,01	2,95	2,95	3.10	3.14	3,16	3,10	3,15	3,13
COOLING ONLY (EN14511 VALUE)												,		
Cooling capacity	(1)(2)	kW	209	247	301	328	379	424	485	527	556	628	704	828
EER	(1)(2)	kW/kW	2,88	2,89	2.94	2,97	2,91	2.92	3.08	3.11	3.12	3.07	3.14	3.11
HEATING ONLY (GROSS VALUE)	(.)(-)		_,	_,	_,	_,	_,	_,	-,	-,	.,	-,	-,	-,
Total heating capacity	(3)	kW	218	258	308	339	396	434	492	541	571	615	711	826
Total power input	(3)	kW	67,0	80,7	92,2	101	122	131	149	159	169	178	207	240
COP	(3)	kW/kW	3,25	3,20	3,35	3,35	3,25	3,32	3.31	3.41	3,38	3.46	3.43	3.44
HEATING ONLY (EN14511 VALUE)	(0)	1.11/1.11	0,20	0,20	0,00	0,00	0,20	0,02	0,01	5,71	0,00	5,40	5,45	0,77
Total heating capacity	(2)(3)	kW	218	259	310	340	397	435	489	539	569	611	708	823
COP	(2)(3)	kW/kW	3,23	259	3,32	3,32	3,23	435					3.39	3,39
		KW/KW	3,23	3,17	3,32	3,32	3,23	3,31	3,25	3,34	3,31	3,37	3,39	3,39
COOLING WITH TOTAL HEAT RECOVER		kW	209	248	305	329	201	428	40.4	500	550	001	701	000
Cooling capacity	(4)						381		484	522	550	631	701	826
Total power input	(4)	kW	60,6	72,2	87,1	92,5	111	122	134	145	153	170	193	228
Recovery heat exchanger capacity	(4)	kW	266	316	386	416	486	542	609	658	694	791	883	1041
TER		kW/kW	7,83	7,81	7,93	8,06	7,80	7,97	8,18	8,14	8,12	8,35	8,19	8,17
SEASONAL EFFICIENCY IN HEATING (E														
PDesign	(5)	kW	155	210	219	241	282	311	354	383	-	-	-	-
SCOP	(5)		3,41	3,21	3,45	3,53	3,40	3,54	3,37	3,46	-	-	-	-
Performance ns (Reg. 811/2013 UE)	(5)	%	133	125	135	138	133	139	132	136	-	-	-	-
Seasonal efficiency class (Regulation	UE) 811/20	013) (5)	-	-	-		-	-	-	-	-	-	-	-
EXCHANGERS														
HEAT EXCHANGER USER SIDE IN REFR	IGERATION	1												
Water flow	(1)	m³/h	36,2	42,8	52,1	56,7	65,5	73,2	83,1	90,4	95,3	107	121	142
Pressure drop	(1)	kPa	28,8	40.2	36.6	43,4	40.3	27,9	26.7	29.0	32.3	23,1	30,5	30,9
HEAT EXCHANGER USER SIDE IN HEAT			.,.	.,		.,	.,.		.,			.,		
Water flow	(3)	m³/h	37.8	44.9	53.6	58.9	68.7	75.4	85.5	94.1	99.2	107	124	143
Pressure drop	(3)	kPa	31,5	44,3	38,8	46,9	44,4	29,6	28,2	31.4	34,9	22,8	31,9	31,5
COMPRESSORS	(3)		51,5	44,0	00,0	-10,0		20,0	20,2	01,4	04,0	22,0	01,0	01,0
Compressors nr.	N°		2	2	2	2	2	2	2	2	2	2	2	2
No. Circuits	N°		2	2	2	2	2	2	2	2	2	2	2	2
NOISE LEVEL	IN		2	2	2	2	2	2	2	2	2	2	2	2
Noise Pressure	(6)	dB(A)	65	65	65	66	66	66	66	68	68	68	68	69
	(6)	dB(A) dB(A)	65 97	65 97	65 97	98	99	66 99						
Sound power level in cooling	(7)(8)	. ,							99	101	101	101	101	102
Sound power level in heating	(7)(9)	dB(A)	97	97	97	98	99	99	99	101	0	0	0	0
SIZE AND WEIGHT	(1.0)													
A	(10)	mm	4610	4610	5610	5610	6610	6610	6300	7200	7200	7200	8400	9700
В	(10)	mm	2220	2220	2220	2220	2220	2220	2260	2260	2260	2260	2260	2260
Н	(10)	mm	2150	2420	2430	2430	2430	2430	2350	2350	2350	2350	2350	2350
Operating weight	(10)	kg	3600	3870	4620	5040	5520	5670	8650	9230	9330	9770	10310	12480

Water source units

NECS-WQ

NECS-WQ	_		0152	0182	0202	0252	0262	0302	0412	0512	0612	0604	0704	0804	0904	1004	1104	1204	1404	1604
Power supply		V/ph/Hz									400/3/50									
PERFORMANCE																				
COOLING ONLY (GROSS VALUE)																				
Cooling capacity	(1)	kW	48.4	55.6	64.6	73,4	82.8	97.0	127	158	205	193	224	254	284	315	363	412	466	520
Total power input	(1)	kW	8,56	9,73	11,2	13,2	14,7	17,4	22,8	28,2	36.6	34,7	40,1	45,5	50,9	56,4	64,8	73,0	84,8	96,5
EER	(1)	kW/kW	5.65	5,71	5,77	5,56	5.63	5,57	5,56	5,59	5,60	5,57	5,59	5,59	5.58	5,59	5,60	5,64	5,49	5,39
COOLING ONLY (EN14511 VALUE)	(.)		0,00	0,11	0,11	0,00	0,00	0,01	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,01	0,10	0,00
Cooling capacity	(1)(2)	kW	48,2	55,4	64,3	73,1	82,4	96,6	126	157	204	192	223	253	283	314	362	410	464	518
EER	(1)(2)	kW/kW	5,45	5,53	5,59	5,39	5,45	5,40	5,38	5,41	5,43	5,40	5,43	5,43	5,43	5,44	5,45	5,49	5,35	5,26
HEATING ONLY (GROSS VALUE)	()()		2,12	-,	-,	-,	-,	-,	-,	•,	-,	-,	-,	-,	-,	-,	.,	.,	-,	-,
Total heating capacity	(3)	kW	52.1	59.7	69.3	79.0	88.9	104	135	169	219	208	240	270	303	338	388	440	498	557
Total power input	(3)	kW	12,4	13,8	16,2	18,5	20,4	23,9	31,0	38,4	49,9	47,7	54,7	61,8	69,2	76,8	88,4	99,6	113	126
COP	(3)	kW/kW	4,20	4,33	4,28	4,27	4,36	4,37	4,35	4,40	4,39	4.36	4,38	4,37	4,38	4,40	4,39	4,41	4,41	4,42
HEATING ONLY (EN14511 VALUE)	(-)		.,	.,	.,	.,	.,	.,	.,	.,	.,	1,00	1,00	1,07	1,00	1,10	1,00	.,	.,	1, 12
Total heating capacity	(2)(3)	kW	52.4	60.0	69.6	79.4	89.3	105	136	170	220	209	241	271	305	339	390	442	500	559
COP	(2)(3)	kW/kW	4.10	4.23	4.19	4,18	4.26	4,27	4.25	4,30	4,29	4.27	4.29	4.28	4.30	4,31	4,31	4,33	4,33	4,34
COOLING WITH TOTAL HEAT RECOVER			.,	.,	.,	.,	.,==	.,	.,	.,	.,	.,	1,20	1,20	1,00	1,01	1,01	1,00	1,00	1,01
Cooling capacity	(4)	kW	40,4	46,7	54,1	61,7	69,7	82,0	106	133	172	163	188	212	238	266	305	346	392	438
Total power input	(4)	kW	12,4	13,8	16,2	18,5	20,4	23,9	31,0	38,4	49,9	47,7	54,7	61,8	69,2	76,8	88,4	99,6	113	126
Recovery heat exchanger capacity	(4)	kW	52.1	59.7	69.3	79.0	88.9	104	135	169	219	208	240	270	303	338	388	440	498	557
TER	(.)	kW/kW	7.46	7.71	7.62	7.61	7.77	7.80	7.75	7.85	7,83	7,79	7,82	7.80	7.83	7.86	7.84	7,89	7.88	7.90
Seasonal Efficiency in Heating (Ef	V14825 V		7,10	.,	1,02	1,01	.,	1,00	1,10	1,00	1,00	1,10	1,02	1,00	1,00	1,00	7,01	1,00	1,00	1,00
PDesign	(5)	kW	62.2	71.1	82.8	94.4	106	125	162	202	262	248	289	325	360					-
SCOP	(5)		5,71	5,88	5,93	5,74	5,79	5.79	5,73	5,72	5,76	5.80	5.65	5,78	5,93	-	-	-	-	-
Performance ns (Reg. 811/2013 UE)	(5)	%	220	227	229	222	224	224	221	221	222	224	218	223	229					-
Seasonal efficiency class (Regulation (A++	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-
EXCHANGERS	,	, (,																		
HEAT EXCHANGER USER SIDE IN REFR	IGERATIO	N																		
Water flow	(1)	m³/h	8,33	9,57	11,1	12,6	14,2	16,7	21,8	27,2	35,2	33,3	38,6	43,8	48,9	54,3	62,5	70,9	80,1	89,5
Pressure drop	(1)		28.4	25.6	25.0	28.7	31.9	33.8	39.1	42.4	44.0	41.7	44.1	43.7	43.0	43,9	43.7	44.2	45.6	44.0
HEAT EXCHANGER SOURCE SIDE IN RE	. /	TION	20,1	20,0	20,0	20,1	01,0	00,0	00,1	· _, ·	. 1,0	,.	, .	10,1	10,0	10,0	10,1	,_	10,0	. 1,0
Water flow	(1)	m³/h	3.04	3,49	4,05	4,63	5,21	6.12	7,99	9,94	12,9	12.2	14,1	16,0	17,9	19,9	22,9	25,9	29.4	32.9
Pressure drop	(1)	kPa	3,79	3,42	3,32	3,85	4.26	4,53	5,25	5,68	5,89	5,60	5,91	5.85	5,77	5,89	5,86	5,91	6,15	5,97
HEAT EXCHANGER SOURCE SIDE IN HE		in u	0,10	0,12	0,02	0,00	1,20	1,00	0,20	0,00	0,00	0,00	0,01	0,00	0,11	0,00	0,00	0,01	0,10	0,01
Water flow	(3)	m³/h	4,97	5,75	6,66	7,59	8,58	10,1	13,0	16,3	21,2	20.1	23,1	26.1	29,3	32.7	37,5	42,6	48,2	53.9
Pressure drop	(3)	kPa	10.1	9.25	8,95	10,4	11,5	12,3	13,9	15,3	15,8	15,2	15,8	15,5	15,5	15,9	15,8	15,9	16,5	16,0
HEAT EXCHANGER USER SIDE IN HEAT	. /	iu u	10,1	0,20	0,00	10,4	11,0	12,0	10,0	10,0	10,0	10,2	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0
Water flow	(4)	m³/h	9.05	10.4	12.0	13.7	15.4	18.1	23.4	29.3	38.0	36.2	41.6	46.9	52.7	58.7	67.5	76.4	86.6	96.8
Pressure drop	(4)	kPa	33,5	30,1	29,3	34,0	37,5	39,8	45,1	49,5	51,2	49,3	51,3	50,2	50,0	51,3	51,0	51,4	53,2	51,5
COMPRESSORS	(4)	ni u	00,0	00,1	20,0	04,0	07,0	00,0	40,1	-10,0	01,2	45,5	51,5	50,2	50,0	51,5	51,0	51,4	55,2	51,5
Compressors nr.		N°	2	2	2	2	2	2	2	2	2	4	4	4	4	4	4	4	4	4
No. Circuits		N°	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
NOISE LEVEL			2	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2
Noise Pressure	(6)	dB(A)	42	43	43	43	44	45	46	47	48	54	55	56	57	58	59	59	59	59
Sound power level in cooling	(7)(8)	dB(A)	73	74	74	74	75	76	77	78	79	86	87	88	89	90	91	91	91	91
Sound power level in heating	(7)(0)	dB(A)	73	74	74	74	75	76	77	78	79	86	87	88	89	0	0	0	0	0
SIZE AND WEIGHT		. ,																		
A	(10)	mm	1220	1220	1220	1220	1220	1220	1220	1220	1220	2560	2560	2560	2560	2560	2560	2560	2560	2560
B	(10)	mm	877	877	877	877	877	877	877	877	877	891	891	891	891	891	891	891	891	891
н	(10)	mm	1496	1496	1496	1496	1496	1496	1496	1496	1496	1810	1810	1810	1810	1810	1810	1810	1810	1810
Operating weight	(10)	kg	450	470	490	505	525	550	745	825	910	975	1165	1365	1445	1610	1710	1810	1895	2000

Note 1 Plant (side) cooling exchanger water (in/out) 12°C/7°C; Source (side) heat exchanger water (in/out) 14°C/30°C. 2 Values in compliance with EN14511-3:2011. 3 Plant (side) heat exchanger water (in/out) 40°C/45°C; Source (side) heat exchanger water (in/out) 14°C/7°C. 4 Plant (side) cooling exchanger water (in/out) 12°C/7°C; Plant (side) heat exchanger water (in/out) 40°C/45°C. 5 Seasonal space heating energy efficiency class LOW TEMPERATURE in AVERAGE climate conditions [REGULATION (UE) N. 811/2013] 6 Average sound pressure level at 10m distance, unit in a free field on a reflective surface; non-binding value calculated from the sound power level. 7 Sound power on the basis of measurements made in compliance with ISO 9614. 8 Sound nover level in cooling indnores

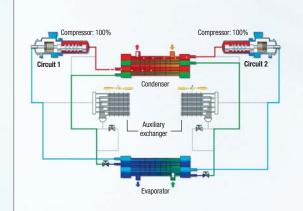
Sound power level in cooling, indoors.
 Sound power level in heating, indoors.
 Unit in standard configuration/execution, without optional accessories.

Water source units

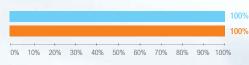
ERACS2-WQ

-

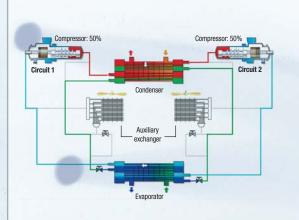
ERACS2-WQ			0802	1002	1102	1302	1502	1702	1902	2152	2502	2602	2702	3202
Power supply		V/ph/Hz						400/3/50						
PERFORMANCE														
COOLING ONLY (GROSS VALUE)														
Cooling capacity	(1)	kW	189	234	268	318	363	424	468	542	633	686	763	870
Total power input	(1)	kW	35,7	44,9	50,6	59,7	68,7	80,2	89,7	98,8	116	125	140	160
EER	(1)	kW/kW	5,31	5,22	5,30	5,32	5,29	5,29	5,21	5,48	5,46	5,48	5,44	5,44
COOLING ONLY (EN14511 VALUE)			,	,			,		,	,				the strength of the
Cooling capacity	(1)(2)	kW	189	233	267	317	362	422	467	541	632	685	761	867
EER		kW/kW	5.19	5,09	5,15	5,20	5,18	5,15	5,13	5,40	5,35	5,39	5,34	5,31
HEATING ONLY (GROSS VALUE)	()()		-,	-,	-,	-,	-,	-,	.,	2,12	-,	-,	-,	-,
Total heating capacity	(3)	kW	205	255	291	344	393	459	514	589	686	738	831	941
Total power input	(3)	kW	45,7	56.9	65,8	76,3	86,9	103	117	128	148	158	180	205
COP	(3)	kW/kW	4,49	4,48	4,43	4,51	4,52	4,44	4,41	4,59	4,62	4,68	4,63	4,60
HEATING ONLY (EN14511 VALUE)	(3)	NW/NW	4,43	4,40	4,45	4,31	4,32	4,44	4,41	4,39	4,02	4,00	4,03	4,00
,	(0)(0)	kW	206	256	293	346	394	461	515	590	688	740	834	944
Total heating capacity	(2)(3)													
COP		kW/kW	4,42	4,40	4,33	4,42	4,44	4,35	4,35	4,54	4,55	4,62	4,56	4,52
COOLING WITH TOTAL HEAT RECOVERY		1.144	400	001	000	070	011	000	40.4	400	E 47	500	000	740
Cooling capacity	(4)	kW	162	201	229	272	311	362	404	468	547	589	662	748
Total power input	(4)	kW	45,7	56,9	65,8	76,3	86,9	103	117	128	148	158	180	205
Recovery heat exchanger capacity	(4)	kW	205	255	291	344	393	459	514	589	686	738	831	941
TER		kW/kW	8,05	8,01	7,91	8,08	8,10	7,94	7,88	8,24	8,31	8,43	8,32	8,26
SEASONAL EFFICIENCY IN HEATING (EN	V14825 VA	,												
PDesign	(5)	kW	249	309	353	418	-	-	-	-	-	-	-	-
SCOP	(5)		5,59	5,56	5,18	5,45	-	-	-	-	1.0-	-	-	-
Performance ns (Reg. 811/2013 UE)	(5)	%	216	214	199	210	-	-	-	-	-	-	-	-
Seasonal efficiency class (Regulation (UE) 811/2	013) (5)	-	-	-	-		-	-	-	-	-	-	-
PDesign	(6)	kW	-	-					-	-	-	-	-	-
SCOP	(6)		-	-	-	-	-	-	-		-	-	-	-
Performance ns (Reg. 811/2013 UE)	(6)	%	-	-					-	-	-	-		-
Seasonal efficiency class (Regulation (UE) 811/2	013) (6)	· .	-	-	-	-	-	-	-	-	-	-	-
EXCHANGERS		, , ,				1. Jan								
HEAT EXCHANGER USER SIDE IN REFRI	IGERATION	J		<u></u>	-									
Water flow	(1)	m³/h	32,6	40,3	46,1	54,7	62,6	73,0	80,5	93,3	109	118	131	150
Pressure drop	(1)	kPa	27,6	34,9	46,8	40,4	36,5	47,1	27,2	25,5	34,8	29,0	35,9	46,7
HEAT EXCHANGER SOURCE SIDE IN RE			21,0	04,0	40,0	40,4	00,0	47,1	21,2	20,0	04,0	20,0	00,0	40,7
Water flow	(1)	m³/h	12,0	14,9	17,0	20,2	23,1	26,9	29,8	34,3	40,1	43,4	48,3	55,1
Pressure drop	(1)	kPa	3,76	4,78	6,38	5,50	4,98	6,42	29,8	34,3	40,1	43,4	46,3	6,31
HEAT EXCHANGER SOURCE SIDE IN HE	. ,	КГd	3,70	4,70	0,30	5,50	4,90	0,42	3,73	3,44	4,70	3,92	4,00	0,31
		ma 3 / ha	00.0	04.0	00.0	22.5	20.2	44.5	40.7	57.0	07.0	70.5	01.5	00.0
Water flow	(3)	m ³ /h	20,0	24,8	28,2	33,5	38,3	44,5	49,7	57,6	67,2	72,5	81,5	92,0
Pressure drop	(3)	kPa	10,4	13,2	17,5	15,2	13,7	17,5	10,4	9,72	13,2	10,9	13,8	17,6
HEAT EXCHANGER USER SIDE IN HEATI		0.4	05.5		50.0	50.0	00.0	70.0						
Water flow	(4)	m³/h	35,7	44,3	50,6	59,8	68,3	79,8	89,2	102	119	128	144	163
Pressure drop	(4)	kPa	33,1	42,1	56,3	48,3	43,5	56,3	33,4	30,7	41,6	34,2	43,4	55,6
COMPRESSORS														
Compressors nr.		N°	2	2	2	2	2	2	2	2	2	2	2	2
No. Circuits		N°	2	2	2	2	2	2	2	2	2	2	2	2
NOISE LEVEL														
Noise Pressure	(7)	dB(A)	62	63	65	65	65	65	65	66	67	67	67	67
Sound power level in cooling	(8)(9)	dB(A)	94	95	97	97	97	97	97	98	99	99	99	99
Sound power level in heating	(8)(10)		94	95	97	97	0	0	0	0	0	0	0	0
SIZE AND WEIGHT	,													
Α	(11)	mm	3680	3680	3680	3680	3680	3680	3800	3800	3800	5000	5000	5000
В	(11)	mm	1170	1170	1170	1170	1170	1170	1490	1490	1490	1490	1490	1490
H	(11)	mm	1950	1950	1950	1950	1950	1950	1950	1950	1950	2050	2050	2050
Operating weight	(11)	kg	2420	2470	2880	3580	3690	3750	4920	5310	5730	6470	6590	7370
operating weight	((1)	NY	2420	2470	2000	3300	3090	5750	4920	5310	5730	0470	0390	1310


Note 1 Plant (side) cooling exchanger water (in/out) 12°C/7°C; Source (side) heat exchanger water (in/out) 14°C/30°C. 2 Values in compliance with EN14511-3:2011. 3 Plant (side) heat exchanger water (in/out) 40°C/45°C; Source (side) heat exchanger water (in/out) 14°C/7°C. 4 Plant (side) cooling exchanger water (in/out) 12°C/7°C; Plant (side) heat exchanger water (in/out) 40°C/45°C. 5 Seasonal space heating energy efficiency class LOW TEMPERATURE in AVERAGE climate conditions [REGULATION (UE) N. 811/2013] 6 Seasonal space heating energy efficiency class MEDIA TEMPERATURE in AVERAGE climate conditions [REGULATION (UE) N. 811/2013] 7 Average sound pressure level at 10m distance, unit in a free field on a reflective surface; non-binding value calculated from the sound power level.

8 Sound power on the basis of measurements made in compliance with ISO 9614.

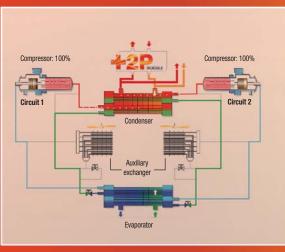

9 Sound power level in cooling, indoors.
10 Sound power level in cooling, indoors.
11 Unit in standard configuration/execution, without optional accessories.

INTSGRA


The main feature of INTEGRA units is the ability to manage the overall capacity of both the cooling and heating side, based on the actual load requirements of the total system. The operational flexibility is total: all the combinations of heating and cooling loads can be met.

100% cold side / 100% hot side

The two circuits operate at maximum power, evaporating in the cold-side exchanger and condensing in the hot-side one. The source-side heat exchanger (air coil or water exchanger, depending on the unit type) is not used, which means that in these conditions there is no energy waste.

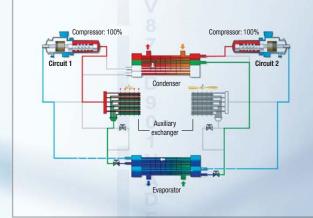


50% cold side / 50% hot side

Also in this situation the unit operates like a water-water unit, as all the evaporating and condensing energy is used for the system. Since the system only requires 50% of the total energy, each circuit operates in partial load conditions. In this particular condition, the exchangers are oversized, thus achieving even higher efficiency.

Operating modes with +2P

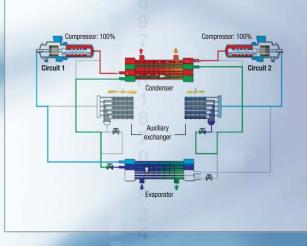
100% cold side 75% hot side 100% very hot side

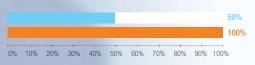

											100%
											75%
											100%
⊢—— 0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100	%

In this condition, both the compressors operate at full load in order to meet the demands of the plant. Both circuits evaporate all the refrigerant in the cold-side heat exchanger and condense in the hot-side one, so the auxiliary source-side heat exchanger is not used.

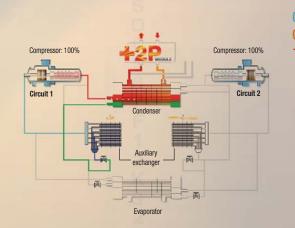
Part of the hot temperature water flow produced in the hot-side heat exchanger is used by the +2P module to produce very hot water (up to 78° C).

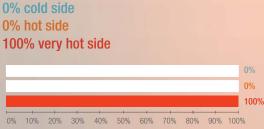
Operating Technology


A smart heat pump is a simple and integrated response to all the applications requiring independent cooling and heating simultaneously, such as air-conditioning requirements for large plants with complex loads. Four operating modes for INTEGRA units are described below.


100% cold side / 50% hot side

Both the circuits operate to produce the amount of energy necessary for the cooling of the plant, evaporating all the refrigerant in the cold-side heat exchanger. While one circuit carries out the condensation on the hot-side heat exchanger, thus supplying the total energy necessary to heat the building, the other circuit exchanges the remaining heating energy in the external environment by using the auxiliary source-side heat exchanger (air coil or water exchanger, depending on the unit type).




50% cold side / 100% hot side

Just like the latter case, in this condition both circuits operate differently, to supply the system with the correct amount of required energy. The unit uses two sources to produce the requested hot water flow: in fact one circuit evaporates the refrigerant in the cold-side heat exchanger, thus supplying the cold water demand, while the other uses the auxiliary source-side heat exchanger. In this way both circuits move energy in the hot-side heat exchanger, fulfilling the request for hot water flow.

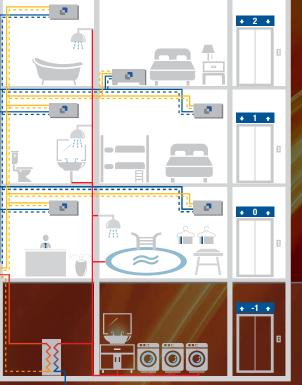
With the +2P module option, INTEGRA units can simultaneously and independently fulfill 3 different thermal loads (cold, hot and very hot water). The following operating modes are two working examples of INTEGRA units with a +2P module fitted in.

This particular condition shows the flexibility of the INTEGRA units with a +2P module: even in the case of no thermal loads (nor cooling, nor heating) requested by the plant, the unit can still provide the very hot water if necessary. In this case, only one circuit is operating partially in order to provide the right amount of hot water needed by the +2P module. A +2P module can produce very hot water (up to 78° C).

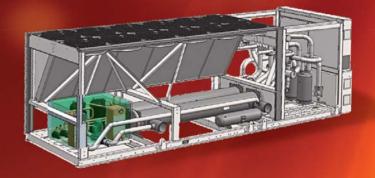
+2P: the integrated module for the independent production of very hot water up to 78°C. From 70 to 279 kW.

+2P is the innovative solution for the production of very high temperature water (up to 78°C). Designed as a completely integrated module, +2P is installed inside the units and delivers very high temperature water by adding 2 more pipes to the standard INTEGRA units. The smart heat pumps featuring this module can therefore fulfill 3 different thermal loads, each with a different temperature, without limitations in terms of operational flexibility. In fact, unlike the de-superheaters, this module can work independently from the unit in which it is installed and without any supplementary source.

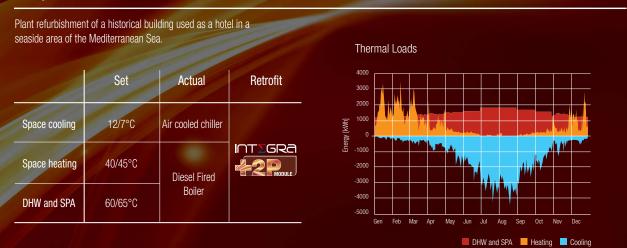
The applications of the **+2P** module include all those cases where 3 different and independent thermal loads are required (cold, hot and very hot water):


Residential and public applications requiring space cooling, space heating and DHW

- Residential and public applications with a central heating plant
 Hospitals
- ✓ Hotels with laundries and SPAs
- Industrial processes


+2P is available in different sizes ensuring great flexibility and adaptability to the most diverse plant requirements.

is a double circuit system: it ensures absolute reliability and service continuity.


INTEGRA	СОР							
ERACS2-Q/SL-CA 3222 with +2P	+2P 200 kW	+2P 285 kW						
Cold 12-7°C Very Hot 65-75°C External air temperature 30°C	3,79	4,08						
Hot 40-45°C Very Hot 65-75°C External air temperature 7°C	2,34	2,43						
Cold 12-7°C Hot 40-45°C Very Hot 65-75°C	4,83	4,83						
VERY HOT only 65-75°C	1,83	1,95						

Efficiency values of the +2P module are calculated considering the 200 kW size and the 285 kW size, combined with a INTEGRA unit ERACS20/SL-CA (size 3222, nominal cooling capacity = 790kW, nominal thermal capacity= 815 kW)

Case study

The combination of INTEGRA units with the +2P module enhances the efficiency of the whole plant when compared to traditional solutions.

Project

Results

An INTEGRA unit with the +2P module can fulfill all the thermal loads with a single unit in a much more efficient way, ensuring 30,4% cost savings and 10,3% global primary energy reduction compared to the current solution.

Global primary energy

Conditions Diesel Fired Boiler Seasonal Efficiency Diesel costs Electric Energy costs Electricity Production Efficiency

At a glance

0,77 /lt 0,12 /kWh_el

"Experience is by far the best proof"

Sir Francis Bacon British philosopher (1561 - 1626)

> Traditional system based on chiller+boiler

▶ 3 boilers for heating, total capacity 1380kW

> 2 air-cooled chillers, total capacity 2180 kW

New system based on smart heat pumps with heat recovery

- 1 ERACS2-Q/SL-CA/S air source heat pump providing heating and cooling
 1x TECS2/SL-CAE/S air
- TX TECSZISE-CAE/S all cooled chiller with magnetic levitation compressors
 TX ClimaPRO system
- ► 1x ClimaPRO system

350 Euston Road

London - Great Britain 2015

Application: Office buildings

Plant type: Hydronic System Cooling capacity: 1022 kW Heating capacity: 541 kW Installed machines: 1x ERACS2-Q/SL-CA/S 2222, 1x TECS2/SL-CAE/S 0512, 1x ClimaPRO

Project

350 Euston Road is a grade A seven-storey office building that forms part of Regent's Place, a 13 acre, fully managed estate in the heart of London. Owned by British Land and managed by Broadgate Estates, the building features latest sustainable design used to garnish a lively mix of retail, leisure and public spaces.

In this high-demanding context, the replacement of the previous HVAC system aimed at being in line with the energy targets established by the property owner.

Study

In order to investigate the advantages of replacing a traditional HVAC system based on existing boilers and chillers with smart heat pumps with heat recovery, an official case study was conducted.

Starting from the energy analysis of the current system, the data revealed that the building was characterised by a high cooling demand, even during the Winter, together with a considerable overlap of heating and cooling requirements, as is frequently the case in office buildings.

Solution

The units selected to serve the building's requirements were one Climaveneta ERACS2-Q SLCA 2722 unit, belonging to the INTEGRA range, and one TECS2/SL-CAE/S 0512 chiller with magnetic levitation compressors. The selected

The results of the study revealed that replacing existing old chillers and boilers with heat recovery heat pumps leads to significant enhancements in terms of environmental, economic and energyrelated aspects. After one year the new system has resulted in 470 less tonnes of CO₂ emissions and a cut on primary energy consumption by 50%, thus leading to 84.000€ annual cost savings and a paypack time with one year.

Year payback

in replacement projects, for the additional investment needed to adapt exhisting distribution systems to new heat pump based designs

CO2 Emission per year

/II tonne

Annual cost savings

consumption

Gas use

-85%

BNL Roma Tiburtina new headquarters

Rome - Italy 2015 Application: Office buildings Plant type: Hydronic System Cooling capacity: 5036 kW Heating capacity: 4130 kW Installed machines: 4x ERACS2-Q/SL-CA 3222 +2P MODULE, 1x ERACS2-Q/SL-CA 3222, 1x FOCS2/SL-CA 3902 Architect: 5+1AA Alfonso Femia Gianluca Peluffo

Project

The new BNL Headquarters, designed by 5+1AA Alfonso Femia Gianluca Peluffo, is located near the Rome Tiburtina high speed railroad station. The building - 67.000 sqm including 20.000 underground - is centred around employees well being. It will provide 3.800 ergonomic workplaces and a vast range of facilities for employees including a gym, a number of service centres, a nursery school and several restaurants.

Challenge

BNL Rome Tiburtina fits well in the urban context where the building is located, and everything outside and inside the structure has been designed to combine the values of environmental, economical and social sustainability. For the HVAC system, the main aim was to serve efficiently the heating and cooling building demands whilst ensuring high comfort levels in all the liveable spaces.

Solution

The premium cooling and heating system selected by the HVAC designer consists of 5 ERACS2-Q units, 4 of which are equipped with +2P MODULE (a patented solution with 2 additional pipes for hot water for domestic usage) and one Super Low noise version, Class A Efficiency FOCS2/SL-CA chiller. Thanks to the addition of the +2P MODULE, the system makes use of two additional pipes for providing very hot water up to 78°C.

Botswana Innovation Hub

Gaborone - Botswana 2015 Application: Office buildings Cooling capacity: 2803 kW Heating capacity: 2133 kW Installed machines: 3x ERACS2-Q XL-CA 2722, 1x i-FX (1+i) CA 2722, 1x ClimaPRO

Project

The Botswana Innovation Hub is located strategically on a 57 hectares site, near the Sir Seretse Khama International Airport in Gaborone, the capital city of Botswana and the centre of the country's business activity. The facility will provide an attractive location for technology driven and knowledge intensive business to develop and compete in the global market.

Challenge

The building has been designed to save energy and be as many efficient as possible. The roof design of the Botswana Innovation Hub incorporates large overhangs to passively shade the building's interior volumes, mechanisms to collect and re-use water, and both passive and active photovoltaic systems to harness solar energy.

Solution

The air conditioning system is based on 3 INTEGRA multipurpose ERACS2-Q XL-CA 2722 and one high efficiency air cooled chiller i-FX (1+i) CA 2722, all supplied by Climaveneta. The 4-pipe HVAC system will be managed and optimised by ClimaPRO, the new Climaveneta system manager that actively optimises the entire chiller plant by managing and adjusting each component directly involved in the cooling production.

Stade de Bordeaux

Bordeaux - France 2015

Application: Sport facilities Plant type: Hydronic System Cooling capacity: 1090 kW Heating capacity: 1182 kW Installed machines: 1x NECS-Q/CA 1816, 1x NECS-N/CA 2416

Project

The Nouveau Stade de Bordeaux is a new generation multifunctional stadium dedicated to sports and culture. With an adaptable capacity of 42.000 seats, the Stadium is designed to accommodate a rich variety of programs: competitions, shows, concerts, and corporate events, following the recent philosophy to create futuristic stadiums dedicated not only to sport competitions but also to other public events.

Challenge

Mixed-use stadiums, thanks to the possibility of hosting more than one event a week, represent today the best option for getting a quicker ROI on such large investments. Main constraints imposed by the property owner were to deliver high comfort levels in terms of reduced humidity and ideal environmental temperature, whilst reducing operating costs of the devices.

Solution

The comfort in the offices, the dressing rooms, the corridors and the other rooms of the building is granted by two Climaveneta units, able to combine the best internal temperature and humidity level, reducing the energy consumption and therefore the operating costs. One NECS-N/CA reversible heat pump and one NECS-Q/CA multiuse unit grant the maximum comfort all year round with the highest energy efficiency in this futuristic and emblematic stadium in the heart of Bordeaux.

SKF Argentina

Tortuguitas - Argentina 2014 Application: Tools and machinery Plant type: Hydronic System Cooling capacity: 1042 kW Heating capacity: 1056 kW

Installed machines: 2x NECS-Q 1816, 2x AX 26 Close Control Units, 9x WIZARD air handling units

n

1

6

Project

SKF was founded in Gothenburg in 1907 by the inventor of the double row self-aligning ball bearing. Today, the company is a global leader in bearings and units, seals, mechatronics, services and lubrication systems with 46.775 employees and 140 sites within 32 countries.

Challenge

SKF demonstrates the environmental care by adopting world leading sustainable design and construction standards for its new buildings, with 10 sites that have been LEED certified in recent years. The Group's aim is to reduce the environmental impact of also the existing buildings by renewing previous plants or by making use of renewable resources, if possible.

Solution

An example of this strategy is the latest HVAC system renovation made in the Tortuguitas plant. To combine perfect comfort in the factory with a substantial energy efficiency improvement of the plant, 2 Climaveneta NECS-Q 1816 INTEGRA units combined with 9 WIZARD air handling units were installed. The INTEGRA units are able to satisfy the demand for hot and cold water simultaneously through a system that does not require any switching, perfectly responding to the great temperature range typical of the Argentinean climate. In the same plant, 2 AX 26 Close Control Units have been installed to satisfy the cooling request of the local server room.

More than 1000 projects All over the world

Campus New Velizy <u>2013 Vélizy -</u> France

Application: Mixed-use buildings Cooling capacity: 2338 kW Heating capacity: 2225 kW Machines installed: 1x ERACS2-0/CA 1762, 1x ERACS2-0/CA 2622, 2x FOCS-N/CA 2622, 3x NX/LN-K (0202,0502, 0152)

Kinetic 2015 Boulogne - France

Certifications: BREEAM Excellent Application: Mixed-use buildings Cooling capacity: 1200 kW Machines installed: 2x ERACS-Q/SL 2722

Inditex

Property owner: Inditex Application: Industrial processes Cooling capacity: 3030 kW Heating capacity: 1084 kW

Machines installed: 1x ERACS2-Q/CA 1162, 1xERACS2-Q/CA 3222, 2xF0CS2/CA 4202

CDC Canberra Data center 2015 Canberra - Australia

Application: Data Centers Cooling capacity: 3975 kW Heating capacity: 496 kW Machines installed: 2x FX-FC-NG-SL 5204, 2x ERACS2-Q 1162 SL CA, 1x FX-FC-NG-SL 5402

FNB - First National Bank 2015 Ferndale - South Africa

Application: Financial buildings

Cooling capacity: 1421 kW

Heating capacity: 984 kW Machines installed:

2x ERACS2-Q/SL-CA 2022, 1x FOCS2/SL-CA 1922

Kings Avenue Mall 2014 Paphos - Cyprus

Application: Shopping centre-Cooling capacity: 5082 kW Heating capacity: 1082 kW Machines installed: 2x ERACS2-0/SL-CA 2222, 3x TECS2/SL-CA-E 1154, 2x I-AXO 29

Every project is characterised by different usage conditions and system specifications for many different latitudes. All these projects share high energy efficiency, maximum integration and total reliability due to the unique Climaveneta experience.

Property owner: Amazon Application: Industrial processes Cooling capacity: 3980 kW Heating capacity: 4126 kW Machines installed: 3x ERACS2-0 3222, 2x FOCS-N/CA 3222, 1x ClimaPR0

Cisco Systems Vimercate 2014 Milan - Italy

Application: Office buildings Cooling capacity: 4505 kW Heating capacity: 459 kW Machines installed: AC close control units 1x TECS2/SL-CA-E 0712, 2x TECS-W HC 812, 1x ERACS2-W0 1702, 1x ClimaPR0, 1x FX-FC NG 3402, 2x FOCS/SL-CA-E 1922

Palace of Europe 2013 Strasbourg - France

Application: Institutions Cooling capacity: 9952 kW Heating capacity: 3764 kW Machines installed: 4x ERACS2-WQ 3202, 4x TECS2-W/HC H 1614

Shanghai Institute of Technical Physics 2013 Shanghai - China Application: Schools and Universities Cooling capacity: 3880 kW Heating capacity: 4250 kW Machines installed: 3x smart heat pumps for heating and cooling 3x reversible air cooled heat pumps

IBM Headquarters - Chile 2009 Santiago - Chile

Investor: IBM Application: Office buildings Cooling capacity: 1687 kW Heating capacity: 1821 kW Machines installed: 2x ERACS-0/B 1762 3x ERACS-0/B 1562

PCC Marriott Hotel 2015 Austria

Application: Leisure centres Cooling capacity: 1672 kW Heating capacity: 1175 kW Machines installed: 1x ERACS2-WQ 2702, 1x NECS-WQ 1204, 1x FOCS3-W 2101

A Group Company of MITSUBISHI ELECTRIC

Climaveneta S.p.A.

Via Sarson 57/c 36061 Bassano del Grappa (VI) Italy Tel +39 0424 509 500 Fax +39 0424 509 509 info@climaveneta.com www.climaveneta.com

Subsidiaries

France www.climaveneta.fr

Spain www.climaveneta.es

Poland

www.climaveneta.pl

Germany www.climaveneta.de

Great Britain www.climaveneta.co.uk

Russia ru.climaveneta.com

China www.climaveneta.com.cn

India www.climaveneta.in

Middle East ae.climaveneta.com

Southeast Asia www.climaveneta.com

Hong Kong www.climaveneta.com

For more information: www.climaveneta.com